Arithmetic Ramsey Theory

co.combinatorics nt.number-theory
Start Date
2018-09-10 
End Date
2018-09-13 
Institution
University of Manchester 
City
Manchester 
Country
UK 
Meeting Type
conference 
Homepage
https://sites.google.com/site/arithmeticramseytheory/home 
Contact Name
 

Description

Whilst in Manchester, Paul Erdős co-authored two formative papers in Ramsey theory:

  • 'A combinatorial theorem in geometry' (with G. Szekeres, 1935), giving a new proof of Ramsey's theorem.
  • 'On some sequences of integers' (with P. Turán, 1936), laying the foundation for density results over arithmetic sets.

Some 80 years later, we would like to commemorate this and subsequent discoveries in additive combinatorics, continuing the celebration of the return of the number theory group to Manchester initiated by Diophantine Problems.

The central topic of the conference concerns the existence of structure within large arithmetic sets (broadly interpreted). In particular:

  • Density bounds for sets lacking arithmetic configurations (Roth's theorem, Szemerédi's theorem, the cap-set problem and the polynomial method).
  • Existence of arithmetic configurations in relatively dense sets (Szemerédi's theorem in the primes, combinatorial theorems in sparse (pseudo)random sets).
  • Partition regularity of arithmetic configurations (monochromatic sums and products, regularity of non-linear equations).
  • Applications of higher-order Fourier analysis to all of the above, including counting solutions to equations in arithmetic sets of interest.

Enquiries can be sent to the organisers at arithmeticramsey@gmail.com.

Problems?

If you notice a problem with this entry, please contact the curators by email.