Arithmetic, Geometry, Cryptography and Coding Theory

ag.algebraic-geometry nt.number-theory
Start Date
2017-06-19 
End Date
2017-06-23 
Institution
CIRM 
City
Luminy 
Country
France 
Meeting Type
conference 
Homepage
http://scientific-events.weebly.com/1608.html 
Contact Name
 

Description

We wish to organize a conference involving the interactions between theoretical mathematics, as number theory and algebraic geometry, with information theory and communication, as coding theory and cryptography. This conference would be the sixteenth edition of a conference which began in 1987 with the best specialists of the field. The students and young researchers are also invited to collaborate with seniors researchers.

The talks will concern new theoretical mathematical results but also presentation of effective or algorithmic results. The conference will be on a week (five days) with the following schedule : — One or two plenary talks each day at the beginning of the session given by high level researchers. Our hope is that a part of these talks will be given by researchers not in our community in order to present new directions and new applications of arithmetic and/or algebraic geometry. — The other talks will be specialized short ones.

At the end of the conference, we plan to publish proceedings in the Contemporary Mathematics collection of the AMS.

Topics of the Conference — Number theory, asymptotic behavior of families of global fields and statistic arithmetic. — Arithmetic geometry, algebraic curves over finite fields or over number fields, Abelian varieties : point counting methods, theoretical, effective and algorithmic aspects in arithmetic geometry. — Error correcting codes, algebraic codes, geometric codes on algebraic curves or on high dimensional varieties, algebraic decoding algorithms, etc. — Cryptography, elliptic curves and Abelian varieties : discrete logarithm problem, pairings, explicit computing of isognies, invariant theory and curves classification. — Boolean functions, bent functions, APN functions : construction of families of bent functions and hyperbent functions, etc.

Problems?

If you notice a problem with this entry, please contact the curators by email.